Search-based Software Engineering

Continuous Integration and Delivery practices for Cyber- Physical systems: An interview-based study

Generating Class-Level Integration Tests Using Call Site Information

Abstract: Search-based approaches have been used in the literature to automate the process of creating unit test cases. However, related work has shown that generated tests with high code coverage could be ineffective, i.

Guess What: Test Case Generation for Javascript with Unsupervised Probabilistic Type Inference

Abstract Search-based test case generation approaches make use of static type information to determine which data types should be used for the creation of new test cases. Dynamically typed languages like JavaScript, however, do not have this type information.

Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts

Transaction-reverting statements are key constructs within Solidity that are extensively used for authority and validity checks. Current state-of-the-art search-based testing and fuzzing approaches do not explicitly handle these statements and therefore can not effectively detect security vulnerabilities. In this paper, we argue that it is critical to directly handle and test these statements to assess that they correctly protect the contracts against invalid requests. To this aim, we propose a new approach that improves the search guidance for these transaction-reverting statements based on interprocedural control dependency analysis, in addition to the traditional coverage criteria. We assess the benefits of our approach by performing an empirical study on 100 smart contracts w.r.t. transaction-reverting statement coverage and vulnerability detection capability. Our results show that the proposed approach can improve the performance of DynaMOSA, the state-of-the-art algorithm for test case generation. On average, we improve transaction-reverting statement coverage by 14 % (up to 35 %), line coverage by 8 % (up to 32 %), and vulnerability-detection capability by 17 % (up to 50 %).

Single and Multi-objective Test Cases Prioritization for Self-driving Cars in Virtual Environments

Multi-objective Test Case Selection Through Linkage Learning-driven Crossover

Abstract Test case selection (TCS) aims to select a subset of the test suite to run for regression testing. The selection is typically based on past coverage and execution cost data.

Search-Based Software Re-Modularization: A Case Study at Adyen

A Systematic Comparison of Search-Based Approaches for LDA Hyperparameter Tuning

Context: Latent Dirichlet Allocation (LDA) has been successfully used in the literature to extract topics from software documents and support developers in various software engineering tasks. While LDA has been mostly used with default settings, previous studies showed that default hyperparameter values generate sub-optimal topics from software documents. Objective: Recent studies applied meta-heuristic search (mostly evolutionary algorithms) to configure LDA in an unsupervised and automated fashion. However, previous work advocated for different meta-heuristics and surrogate metrics to optimize. The objective of this paper is to shed light on the influence of these two factors when tuning LDA for SE tasks. Method: We empirically evaluated and compared seven state-of-the-art meta-heuristics and three alternative surrogate metrics (i.e., fitness functions) to solve the problem of identifying duplicate bug reports with LDA. The benchmark consists of ten real-world and open-source projects from the Bench4BL dataset. Results: Our results indicate that (1) meta-heuristics are mostly comparable to one another (except for random search and CMA-ES), and (2) the choice of the surrogate metric impacts the quality of the generated topics and the tuning overhead. Furthermore, calibrating LDA helps identify twice as many duplicates than untuned LDA when inspecting the top five past similar reports. Conclusion: No meta-heuristic and/or fitness function outperforms all the others, as advocated in prior studies. However, we can make recommendations for some combinations of meta-heuristics and fitness functions over others for practical use. Future work should focus on improving the surrogate metrics used to calibrate/tune LDA in an unsupervised fashion.

Good Things Come In Threes: Improving Search-based Crash Reproduction With Helper Objectives

Evolutionary intelligence approaches have been successfully applied to assist developers during debugging by generating a test case reproducing reported crashes. These approaches use a single fitness function called CrashFunction to guide the search process toward reproducing a target crash. Despite the reported achievements, these approaches do not always successfully reproduce some crashes due to a lack of test diversity (premature convergence). In this study, we introduce a new approach, called MO-HO, that addresses this issue via multi-objectivization. In particular, we introduce two new Helper-Objectives for crash reproduction, namely test length (to minimize) and method sequence diversity (to maximize), in addition to CrashFunction. We assessed MO-HO using five multi-objective evolutionary algorithms (NSGA-II, SPEA2, PESA-II, MOEA/D, FEMO) on 124 hard-to-reproduce crashes stemming from open-source projects. Our results indicate that SPEA2 is the best-performing multi-objective algorithm for MO-HO. We evaluated this best-performing algorithm for MO-HO against the state-of-the-art: single-objective approach (SGGA) and decomposition-based multi-objectivization approach (decomposition). Our results show that MO-HO reproduces five crashes that cannot be reproduced by the current state-of-the-art. Besides, MO-HO improves the effectiveness (+10% and +8% in reproduction ratio) and the efficiency in 34.6% and 36% of crashes (i.e., significantly lower running time) compared to SGGA and decomposition, respectively. For some crashes, the improvements are very large, being up to +93.3% for reproduction ratio and -92% for the required running time.

Generating Highly-structured Input Data by Combining Search-based Testing and Grammar-based Fuzzing

Software testing is an important and time-consuming task that is often done manually. In the last decades, researchers have come up with techniques to generate input data (e.g., fuzzing) and automate the process of generating test cases (e.g., search-based testing). However, these techniques are known to have their own limitations: search-based testing does not generate highly-structured data; grammar-based fuzzing does not generate test case structures. To address these limitations, we combine these two techniques. By applying grammar-based mutations to the input data gathered by the search-based testing algorithm, it allows us to co-evolve both aspects of test case generation. We evaluate our approach by performing an empirical study on 20 Java classes from the three most popular JSON parsers across multiple search budgets. Our results show that the proposed approach on average improves branch coverage for JSON related classes by 15% (with a maximum increase of 50%) without negatively impacting other classes.