Multi-objective Optimization

A Fast Multi-objective Evolutionary Approach for Designing Large-Scale Optical Mode Sorter

Spatial mode division de-multiplexing of optical signals has many real-world applications, such as quantum computing and both classical and quantum optical communication. In this context, it is crucial to develop devices able to efficiently sort optical signals according to the optical mode they belong to and route them on different paths. Depending on the mode selected, this problem can be very hard to tackle. Recently, researchers have proposed using multi-objective evolutionary algorithms (MOEAs) ---and NSGA-II in particular--- combined with Linkage Learning (LL) to automate the process of design mode sorter. However, given the very large-search scale of the problem, the existing evolutionary-based solutions have a very slow convergence rate. In this paper, we proposed a novel approach for mode sorter design that combines (1) stochastic linkage learning, (2) the adaptive geometry estimation-based MOEA (AGE-MOEA-II), and (3) an adaptive mutation operator. Our experiments with two- and three-objectives (beams) show that our approach is faster (better convergence rate) and produces better mode sorters (closer to the ideal solutions) than the state-of-the-art approach. A direct comparison with the vanilla NSGA-II and AGE-MOEA-II also further confirms the importance of adopting LL in this domain.

Continuous Integration and Delivery practices for Cyber- Physical systems: An interview-based study

Single and Multi-objective Test Cases Prioritization for Self-driving Cars in Virtual Environments

Multi-objective Test Case Selection Through Linkage Learning-driven Crossover

Abstract Test case selection (TCS) aims to select a subset of the test suite to run for regression testing. The selection is typically based on past coverage and execution cost data.

Good Things Come In Threes: Improving Search-based Crash Reproduction With Helper Objectives

Evolutionary intelligence approaches have been successfully applied to assist developers during debugging by generating a test case reproducing reported crashes. These approaches use a single fitness function called CrashFunction to guide the search process toward reproducing a target crash. Despite the reported achievements, these approaches do not always successfully reproduce some crashes due to a lack of test diversity (premature convergence). In this study, we introduce a new approach, called MO-HO, that addresses this issue via multi-objectivization. In particular, we introduce two new Helper-Objectives for crash reproduction, namely test length (to minimize) and method sequence diversity (to maximize), in addition to CrashFunction. We assessed MO-HO using five multi-objective evolutionary algorithms (NSGA-II, SPEA2, PESA-II, MOEA/D, FEMO) on 124 hard-to-reproduce crashes stemming from open-source projects. Our results indicate that SPEA2 is the best-performing multi-objective algorithm for MO-HO. We evaluated this best-performing algorithm for MO-HO against the state-of-the-art: single-objective approach (SGGA) and decomposition-based multi-objectivization approach (decomposition). Our results show that MO-HO reproduces five crashes that cannot be reproduced by the current state-of-the-art. Besides, MO-HO improves the effectiveness (+10% and +8% in reproduction ratio) and the efficiency in 34.6% and 36% of crashes (i.e., significantly lower running time) compared to SGGA and decomposition, respectively. For some crashes, the improvements are very large, being up to +93.3% for reproduction ratio and -92% for the required running time.

Single-objective versus Multi-Objectivized Optimization for Evolutionary Crash Reproduction

Defect Prediction as a Multi-Objective Optimization Problem